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COMMENT 
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Abstract. The central charge of the Virasoro algebra of the one-dimensional dimerised X Y  
model with arbitrary boundary conditions is obtained at criticality. We obtain c = 1 - 1 2 ~ ~  
where ~ ( 0 s  IS 1/2) characterises the boundary conditions. This shift of c yields relations 
between the X Y  model and both the q-state Potts model and the O ( N )  model. We show 
that the phenomenological renormalisation group equation, which is used to estimate the 
critical value of the parameter of the system, has no real solution for the range T >  1/2&. 
This corresponds to the non-unitary Potts model ( O S  q < 2) and the O( N )  one (-2 s N < 1). 

In this comment, we re-examine some of the results obtained previously with the 
one-dimensional dimerised X Y  model with arbitrary boundary conditions ( BC) (Spron- 
ken and Kemp 1986). One of them is the intriguing result that there are BC for which 
the phenomenological renormalisation group ( PRG) equation (Nightingale 1982), which 
results from the finite-size scaling hypothesis (Derrida and De Seze 1982), has no real 
solution for arbitrary large (but finite) size of the linear X Y  chain. The purpose of 
the present work is to analyse this result in terms of the theory of conformal invariance 
(see for instance Cardy (1987) and references therein). 

Our aim is twofold. We first obtain the finite-size corrections to the ground-state 
energy of the system, at criticality. This yields the Bc-dependent central charge (or 
conformal anomaly), c, of the model. This central charge may then be used to relate 
the X Y  system to different models like the q-state Potts model ( O ~ q s 4 ) .  We then 
show that the range of BC for which the PRG equation fails to provide real estimates 
of the critical parameter corresponds to non-unitary theories (i.e. theories with c < 1/2). 

In fact, the parameter T (defined below) that characterises the BC is equivalent to 
the charge (defect line) introduced in the modified Gaussian model (Blote et a1 1986, 
Dotsenko and Fateev 1984, Cardy 1987). The T dependence of c, the central charge 
of the Virasoro algebra (Affleck 1986, Friedan et a1 1984), is c = 1 - 1 2 ~ ’  and one can 
use the results of Blote et al (1986) (see also Cardy 1987) to relate T to the q-state 
Potts model (OS q < 4). For example one has for T = 1/2d6, c = 1/2 and q = 2 (the 
Ising model) and for T > 1/2d6, c < 112 and q < 2. This is the range of non-unitary 
theories. It is precisely for this range of T (i.e. T >  1/2d6) that the PRG has no real 
solution. Using the work of Blote et a1 (1986), we also give explicit relations between 
T and q ( O S  q s 4) of the q-state Potts model as well as T and N of the O ( N )  model 
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( I N  c 2). Varying T from T = 0 (periodic B C )  to r = 1/2 (antiperiodic B C )  (i.e. -2 s c s 
l),  one obtains the whole set of the dominant corrections to the finite-size scaling for 
these models. 

This comment is organised as follows. We first recall the main results obtained for 
the one-dimensional dimerised X Y  model. The ground-state energy is then obtained 
at criticality and the central charge is calculated. The relations between r and the 
parameters of the q-state Potts model and the O( N )  model are then established. Using 
these relations, we show that the X Y  model with BC such that the PRG has no real 
solution corresponds to non-unitary models. 

The Hamiltonian for the one-dimensional spin-; dimerised antiferromagnetic X Y  
model is 

N 
H = ; [ 1 - (-1)JS][e;u,-+, +cc] e$+, = e*-2.rr1T(+: (1) 

J = 1  

where the quantity 6 is the dimerisation parameter which is subjected to 161 S 1 and 
where the boundary conditions are characterised by the parameter r (0 S r C 1/2; 7 = 0, 
periodic B C ;  T = 1/2, antiperiodic B C ) .  In equation ( l ) ,  the e are the Pauli operators 
and the factor i is a normalisation factor (Hamer 1985). The number of sites, N, is 
assumed to be even. The X Y  model whose Hamiltonian is given by ( l ) ,  has been 
shown previously (Fields, 1979) to undergo a phase transition in the thermodynamic 
limit for 6=0.  It also corresponds to the Ashkin-Teller model in the quantum 
Hamiltonian limit (without interaction, Kohmoto e t  al (1981)). 

The Hamiltonian (1) can be rewritten in terms of spinless fermion variables using 
the Jordan-Wigner transformation (Jordan and Wigner 1928). An additional linear 
transformation (Lieb e t  a1 1961) then yields 

where the spin variable c(c = t, J.) is a dummy index and the elementary excitation 
operators 7 are fermion operators. The quantity A k ( 6 )  is given by: 

A k ( 6 )  =i[( 1 - a)’+ (1 + 6)2+2(  1 - s 2 )  COS k]1 ’2  (3) 
and the k depend upon r through the boundary conditions and also upon the total z 
component of the spin, Z,. The ground state has no elementary excitation (Zz = 0) 
while the first excited state has one (Zz = *l). The corresponding energies are 

m = l  
odd 

m = 2  
even 

The gap between these states (the fermionic gap, corresponding to the spin-spin 
correlation of the associated two-dimensional classical spin system (Kohmoto e t  al 
1981)) is 

( 5 )  
m7r+2m N-1 

A S ( 6 , r , N ) =  m = l  1 ( -1)m+1[62+(1-62)sin2(  )] . 
The finite-size corrections to the ground-state energy are now obtained at criticality 
(6 = 0). This yields the central charge, c, of the model. The PRG equation will be 
obtained using expression (5) for the fermionic gap. 
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At the infinite-system critical value of 6, i.e. 6 = 0, equation (4a)  can be obtained 
in closed form. The result and its expansion (keeping the dominant terms only when 
N + 00) are 

The Hamiltonian (1 )  can be trivially transformed into an equivalent (i.e. with the same 
spectrum) Hamiltonian with periodic BC (Kolb 1985). One can thus use the formula 
of Blote et al (1986) to obtain the central charge c. One finds from (6) that c = 1 - 1 2 ~ ~ .  

Other models can then be related to the modified-sc X Y  model at criticality (6  = 0) 
through the parameter T. Since the conformal anomaly c is related to T through 
c = 1 - 1 2 ~ ~ ,  and since the X Y  model can be related to the two-dimensional Gaussian 
model (Kohmoto et a1 1981), one may infer, from the work of Blote et a1 (1986) and 
the result obtained by Kandanoff (this unpublished result was quoted by Cardy (1987; 
see equation (4.85))), the following relations for the q-state Potts model (Od q s 4): 

fi= 2 COS{ 7TT[ ( T 2 +  2)'12- T I }  (7a)  

N = 2 COS{ T T [  ( T2 2) + T I } .  (7b) 

and, for the O( N) model (-2 s N d 2): 

In these expressions, Os 7s 1/2. Using (9, we now obtain the range of T for which 
the PRG has no real solution and from (7), the corresponding values of the parameters 
q and N of the Potts and the O ( N )  models. 

The value of the critical parameter S can be obtained using the PRG equation 
(Nightingale 1982, Derrida and De Seze 1982; note that the gap in the one-dimensional 
quantum system corresponds to the inverse correlation length in the classical two- 
dimensional system): 

NA(6, 7, N )  = N'A(6, T,  N ' ) .  (8) 

The solution of (8) yields an estimated value, a,,., of the critical parameter. Using 
( 5 )  and (8), and the formula 

one obtains, with N'  = N + 2 ( N  >> 1) (keeping the dominant terms only), 

where 
- 1 / 2  

D(7.)= - +w(1+ r )  +*(I- 7) -wci- T )  - \ r r ( f+ T ) )  . (10) 

In these expressions, 9(. . .) is the digamma function. It is straightforward to show 
that the function D ( T )  is real for the whole range ~d 1/2. Therefore, (9) has a real 
solution for T S  1/2d6 only. 

The very puzzling value of T (  7 = 1/2d6) above which the PRG equation no longer 
has a real solution thus seems to be related to the assumption made by Friedan er a1 
(1984) that only representations corresponding to the central charge c = 1 - 6/ m( m + 1) 

( (1 -27) 47 
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(with m 2 3 ,  i.e. c 2  112) are allowed when c <  1. From the finite-size corrections to 
the ground-state energy, at criticality, which are given by (6), it follows that c = 1 - 1 2 ~ ~ .  
Accordingly we obtain c = 112 for r = 1/2J6 and c < 112 for larger values of r. The 
latter corresponds to the non-unitary regime (i.e. model with c < 112). From ( 7 a )  and 
(7b) ,  one concludes that the X Y  system then corresponds to the Potts model with 
0 G q < 2 and to the O( N )  model with -2 s N < 1. 
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